Scratch for derived omega in hybrid coordinates
Define p=akP0+bkps(ϕ,λ)
where we assume that we're working on a single model level.
ω | =DtDp=∂t∂p+vh⋅∇ηp+DtDη∂η∂p |
| =0+vh⋅∇ηp−0 |
| =acosϕu∂ηλ∂p+0⋅∂ηϕ∂p |
| =acosϕu∂ηλ∂p |
| =acosϕu∂ηλ∂(akp0+bkps(ϕ,λ)) |
| =bkacosϕu∂ηλ∂(ps(ϕ,λ)) |
Using the definition ps(ϕ,λ)=p0exp[−Rdg(τint,1(zs(ϕ,λ))−τint,2(zs(ϕ,λ))IT(ϕ))]
We get that
∂ηλ∂ps | =∂ηλ∂p0exp[−Rdg(τint,1(zs(ϕ,λ))−τint,2(zs(ϕ,λ))IT(ϕ))] |
| =−Rdgp0exp[−Rdg(τint,1(zs(ϕ,λ))−τint,2(zs(ϕ,λ))IT(ϕ))][([∂z∂τint,1](zs(ϕ,λ))−IT(ϕ)[∂z∂τint,2](zs(ϕ,λ)))][∂ηλ∂zs](ϕ,λ) |
∂zτint,1(z) | =∂zΓ1[exp(T0Γz)−1]+z(T0TPT0−TP)exp[−(bRdT0zg)2] |
∂zτint,2 | =∂z2K+2(TETPTE−TP)zexp[−(bRdT0zg)2] |