Parametric Lamb Waves

Define kk to be a single wavelength of zonally propagating lamb wave.

Relevant quantities: p=p0exp(z=0zgRdTdz)cos(k(xct))p' = p_0 \exp\left(- \int_{z=0}^z \frac{g}{R_d\overline{T}}\, \mathrm{d} z\right) \cos(k(x-ct))

c=γRdT c = \sqrt{\gamma R_d \overline{T}}

u(z)=p0(c)ρexp(gRdTz)cos(k(xct)) u'(z) = - \frac{p_0}{(-c)\overline{\rho}} \exp\left(\frac{g}{R_d \overline{T}} z\right) \cos(k(x-ct))

u(z)=p0cρ0cos(k(xct)) u'(z) = \frac{p_0}{c\rho_0} \cos(k(x-ct))

From one of Christiane's presentations we get

ω=Dtp=tp+vp+wzp\omega = \mathrm{D}_t p = \partial_t p + \mathbf{v} \cdot \nabla p + w \partial_z p

ω=(RdTpcppT)1(tT+uxT+vyT)\omega = \left(\frac{R_dT}{pc_p} - \partial_p T\right)^{-1} \left(\partial_t T + u \partial_x T + v \partial_y T \right)

Allow variation in horizontal structure of temperature but not vertical. Assume that density is constant in horizontal, vary in vertical.

(p(z)+p(x,z))=ρ(z)Rd(T+T(x))(\overline{p}(z) + p'(x, z)) = \overline{\rho}(z) R_d (\overline{T} + T'(x)) p(x,z)=ρ(z)RdT(x) p'(x, z) = \overline{\rho}(z) R_d T'(x)

And canceling gives T(x)=p0ρ0Rdcos(k(xct)) T'(x) = \frac{p_0}{\rho_0R_d} \cos(k(x-c t))

Let's linearize the nonhydrostatic equation in height coordinates to try to figure this out: Dtw=ρ1zpg \mathrm{D}_t w = -\rho^{-1}\partial_z p - g ρtw=zpzpρg \overline{\rho}\partial_t w = -\partial_z\overline{p} - \partial_z p' - \overline{\rho} g ρtw=zp \overline{\rho}\partial_t w = - \partial_z p'

So I think this gives us full linearized closure of our equations. This can now be implemented.