Parametric Lamb Waves
Define k
to be a single wavelength of zonally propagating lamb wave.
Relevant quantities:
p′=p0exp(−∫z=0zRdTgdz)cos(k(x−ct))
c=γRdT
u′(z)=−(−c)ρp0exp(RdTgz)cos(k(x−ct))
u′(z)=cρ0p0cos(k(x−ct))
From one of Christiane's presentations we get
ω=Dtp=∂tp+v⋅∇p+w∂zp
ω=(pcpRdT−∂pT)−1(∂tT+u∂xT+v∂yT)
Allow variation in horizontal structure of temperature but not vertical. Assume that density is constant in horizontal, vary in vertical.
(p(z)+p′(x,z))=ρ(z)Rd(T+T′(x))
p′(x,z)=ρ(z)RdT′(x)
And canceling gives T′(x)=ρ0Rdp0cos(k(x−ct))
Let's linearize the nonhydrostatic equation in height coordinates to try to figure this out:
Dtw=−ρ−1∂zp−g
ρ∂tw=−∂zp−∂zp′−ρg
ρ∂tw=−∂zp′
So I think this gives us full linearized closure of our equations. This can now be implemented.