Continuum mechanics

asdf

"Tensor analysis"

  • A 2-tensor Q\mathbf{Q} can be written as Q=Q+Q2+QQ2 \mathbf{Q} = \frac{\mathbf{Q} + \mathbf{Q}^\top}{2} + \frac{\mathbf{Q} - \mathbf{Q}^\top}{2} , where the first operator is symmetric and the second operator is skew-symmetric.
  • We also have Q=RS \mathbf{Q} = \mathbf{R}\mathbf{S} with R\mathbf{R} orthogonal and S\mathbf{S} symmetric.

The dyadic product:

We define (uv)w(wv)u (\boldsymbol{u} \otimes \boldsymbol{v}) \boldsymbol{w} \equiv (\boldsymbol{w} \cdot \boldsymbol{v}) \boldsymbol{u} to be the dyadic product (specific case of tensor product). In a particular basis uv=uv \boldsymbol{u} \otimes \boldsymbol{v} = \mathbf{u} \mathbf{v}^\top.

The natural basis of the space of tensors can be constructed thusly in terms of eiej \boldsymbol{e}_i \otimes \boldsymbol{e}_j, for a suitably chosen basis.

We also define the double-product to be A:Bi,j=13AijBij\mathbf{A} : \mathbf{B} \equiv \sum_{i,j=1}^3 A_{ij}B_{ij}. For higher order tensors this is equivalent to einstein summation notation implicitly specifying summation over the last index.

Kinematics

We assume we have a map ϕ:R3×R+R3\phi : \mathbb{R}^3 \times \mathbb{R}^+ \to \mathbb{R}^3 which maps Xϕ(,t)x \boldsymbol{X} \stackrel{\phi(\cdot, t)}{\to} \boldsymbol{x}

The lagrangian ("material") description of density and the eulerian ("spatial") description can therefore be unified as ρ=ρ(X,t)=ρ(ϕ(X,t),t) \rho = \rho(\boldsymbol{X}, t) = \rho(\phi(\boldsymbol{X}, t), t), showing that ϕ\phi is identified with the usual "flow map".

The deformation gradient:

Consider two elements of the tangent space of a point dX1,dX2\mathrm{d}\boldsymbol{X}_1, \mathrm{d}\boldsymbol{X}_2 then the deformation gradient is just the differential of ϕ\phi written in coordinates, namely F=ϕiXj\boldsymbol{F} = \frac{\partial \phi_i}{\partial X_j} which has typing F:TXjXTϕ(Xj,t)x \boldsymbol{F} : T_{\boldsymbol{X}_j} \boldsymbol{X} \to T_{\phi(\boldsymbol{X}_j, t)} \boldsymbol{x}

We can use the standard argument to write dx=ϕ(dX)=FdX\mathrm{d}\boldsymbol{x} = \phi_*(\mathrm{d}\boldsymbol{X}) = \boldsymbol{F}\mathrm{d}\boldsymbol{X} dX=ϕ1(dx)=F1dx\mathrm{d}\boldsymbol{X} = \phi^{-1}_*(\mathrm{d}\boldsymbol{x}) = \boldsymbol{F}^{-1}\mathrm{d}\boldsymbol{x}

This therefore induces a metric dxidxj=FdXiFdXj=dXiFFdXjdXiCdXj \begin{align*} \mathrm{d}\boldsymbol{x}_i \cdot \mathrm{d}\boldsymbol{x}_j &= \boldsymbol{F}\mathrm{d}\boldsymbol{X}_i \cdot \boldsymbol{F}\mathrm{d}\boldsymbol{X}_j \\ &= \mathrm{d}\boldsymbol{X}_i \cdot \boldsymbol{F}^\top\boldsymbol{F}\mathrm{d}\boldsymbol{X}_j \\ &\equiv \mathrm{d}\boldsymbol{X}_i \cdot \boldsymbol{C}\mathrm{d}\boldsymbol{X}_j \\ \end{align*} which can be shown by index juggling. C\boldsymbol{C} ends up being called the right Cauchy-Green deformation tensor.

In the other direction, dXidXj=dxiFF1dxj \begin{align*} \mathrm{d}\boldsymbol{X}_i \cdot \mathrm{d}\boldsymbol{X}_j &= \mathrm{d}\boldsymbol{x}_i \cdot \boldsymbol{F}^{-\top}\boldsymbol{F}^{-1}\mathrm{d}\boldsymbol{x}_j \end{align*} and the left Cauchy-Green tensor is defined as b1=FF1    b=FF \boldsymbol{b}^{-1} = \boldsymbol{F}^{-\top}\boldsymbol{F}^{-1} \implies \boldsymbol{b} = \boldsymbol{F} \boldsymbol{F}^{\top}

The difference in inner product induced by the flow map can thus be expressed in material form as 12(dxidxjdXidXj)=dXiEdXj \frac{1}{2}\left( \mathrm{d}\boldsymbol{x}_i \cdot \mathrm{d}\boldsymbol{x}_j - \mathrm{d}\boldsymbol{X}_i \cdot \mathrm{d}\boldsymbol{X}_j\right) = \mathrm{d}\boldsymbol{X}_i \cdot \boldsymbol{E} \mathrm{d}\boldsymbol{X}_j with E=12(CI)\boldsymbol{E} = \frac{1}{2}(\boldsymbol{C} - \boldsymbol{I}) and for the spatial form 12(dxidxjdXidXj)=dxiedxj \frac{1}{2}\left( \mathrm{d}\boldsymbol{x}_i \cdot \mathrm{d}\boldsymbol{x}_j - \mathrm{d}\boldsymbol{X}_i \cdot \mathrm{d}\boldsymbol{X}_j\right) = \mathrm{d}\boldsymbol{x}_i \cdot \boldsymbol{e} \mathrm{d}\boldsymbol{x}_j with e=12(Ib1)\boldsymbol{e} = \frac{1}{2}(\boldsymbol{I} - \boldsymbol{b}^{-1})

Pushforward/pullback of tensor

For a tensor B:TXjX×TXjXR \boldsymbol{B} : T_{X_j}\boldsymbol{X} \times T_{X_j}^*\boldsymbol{X} \to \mathbb{R} , B() \boldsymbol{B}() the pushforward to the target is just b(dxi,xj)B(ϕ(dxi),ϕ(xj)\boldsymbol{b}(d\boldsymbol{x}_i, \frac{\partial}{\partial \boldsymbol{x}_j}) \equiv \boldsymbol{B}(\phi_*(d\boldsymbol{x}_i), \phi_*^\top(\frac{\partial}{\partial \boldsymbol{x}_j})

Parent post: