Odd function base state
The idea is to look and see if the Staniforth & White generalized thermal wind solutions
can be generalized further if we place less of a premium on closed-form solutions.
Can we derive an interesting stratosphere using this method?
The compatibility condition is, letting U≡2Ωu+rcosϕu2
and T(r,ϕ)=(ra)3[τ1(r)−τ2(r)τ3(arcosϕ)]−1
,
(sin(ϕ)∂r∂+rcosϕ∂ϕ∂)(TU)=ag∂ϕ∂(r3Ta3)=−agτ2(r)∂ϕ∂[τ3(arcosϕ)]
The 2011 paper indicates that one specifies the latitudinal dependence and then leave τ1,τ2
underdetermined.
τ2∂ϕ∂[τ3(arcosϕ)]=(sinϕ∂r∂+rcosϕ∂ϕ∂)[(r2a2∫arar′τ2(r′)dr)]
(sinϕ∂r∂+rcosϕ∂ϕ∂)[r2a2∫ar′ar′τ2(r′)dr′((ar)k+1cos(ϕ)k−1−(ar)k+3cos(ϕ)k+1)]=(sinϕ∂r∂)[r2a2∫ar′ar′τ2(r′)dr′((ar)k+1cos(ϕ)k−1−(ar)k+3cos(ϕ)k+1)]+(rcosϕ∂ϕ∂)[r2a2∫ar′ar′τ2(r′)dr′((ar)k+1cos(ϕ)k−1−(ar)k+3cos(ϕ)k+1)]=(sinϕ∂r∂)[r2a2∫ar′ar′τ2(r′)dr′((ar)k+1cos(ϕ)k−1−(ar)k+3cos(ϕ)k+1)]+(rcosϕ∂ϕ∂)[r2a2∫ar′ar′τ2(r′)dr′((ar)k+1cos(ϕ)k−1−(ar)k+3cos(ϕ)k+1)]