QHE-SE Dry Vertical Coordinate

Here we denote m[l]=ρ[l]ρ[d]m^{[l]} = \frac{\rho^{[l]}}{\rho^{[d]}}, with lLall{d,wv,cl,ci,rn,sw}l \in \mathcal{L}_{\textrm{all}} \equiv \{d, wv, cl, ci, rn, sw\}.

We let Lwater={wv,cl,ci,rn,sw}Lcond={cl,ci,rn,sw} \begin{align*} \mathcal{L}_{\textrm{water}} = \{wv, cl, ci, rn, sw\}\\ \mathcal{L}_{\textrm{cond}} = \{cl, ci, rn, sw\} \end{align*}

The moist (physical) density is then given by ρ=ρ[d](lLallm[l]) \rho = \rho^{[d]} \left(\sum_{l \in \mathcal{L}_{\textrm{all}}} m^{[l]} \right)

No changes have been made thus far, as these are physical definitions.

IGL + TvT_v

The IGL governs the gaseous components, not the condensates! The most general governing law for the dry species reads as p[d]V[gas]=N[d]kBTp^{[d]} V^{[gas]} = N^{[d]} k_B T , which gets rewritten in typical atmospheric science fashion as p[d]V[gas]Vρ[d]R[d]T p^{[d]} V^{[gas]} - V \rho^{[d]} R^{[d]} T with an analogous equation for p[wv]p^{[wv]}. We make the assumption that V=V[gas] V = V^{[gas]}, by virtue of assuming that condensate species are incompressible and take up negligible volume. We end up with p=(ρ[d]R[d]+ρ[wv]R[wv])T p = \left(\rho^{[d]}R^{[d]} + \rho^{[wv]} R^{[wv]}\right)T

This gets rewritten (letting ε=R[d]R[wv]\varepsilon = \frac{R^{[d]}}{R^{[wv]}} ) as p=ρR[d](1+1εm[wv]lLallm[l])TρR[d]Tvp = \rho R^{[d]} \left(\frac{1 + \frac{1}{\varepsilon} m^{[wv]}}{\sum_{l \in \mathcal{L}_{\textrm{all}}} m^{[l]}} \right)T \equiv \rho R^{[d]} T_v

Mass coordinate definition:

The dry-η\eta coordinate can be specified in terms of η[d](s)=h(z=z(s)z=ρ[d]dz,z=z(1)z=ρ[d]dz)\eta^{[d]}(s) = h\left(\int_{z' = z(s)}^{z'=\infty} \rho^{[d]}\intd{z'}, \int_{z' = z(1)}^{z'=\infty} \rho^{[d]}\intd{z'}\right) with η[d](0)=0\eta^{[d]}(0) = 0 and η[d](1)=1\eta^{[d]}(1) = 1.