matsuno gill

Slow-wave MG

Gill's paper nondimensionalizes the equations using the length scale corresponding to the equatorial rossby radius on a β\beta plane (β=2Ωcos(0)a\beta = \frac{2\Omega \cos(0)}{a}) Letting c=NDπc = \frac{ND}{\pi} , with ztop=Dz_{\textrm{top}} = D and NN the B-V frequency, then the equatorial Rossby radius is c2β \sqrt{\frac{c}{2\beta}} and the time scale 12βc\sqrt{\frac{1}{2\beta c}} . The resulting equations of motion are ut12yv=pxvt+12yu=pypt+ux+vy=Q \begin{align*} \pder{u}{t} - \frac{1}{2} y v &= -\pder{p}{x} \\ \pder{v}{t} + \frac{1}{2} y u &= -\pder{p}{y} \\ \pder{p}{t} + \pder{u}{x} + \pder{v}{y} &= -Q \end{align*} with QQ our forced heating. We then add ODE damping to heat and wind, under which the steady state equations look like

εu12yv=pxεv+12yu=pyεp+ux+vy=Q(w=εp+Q) \begin{align*} \varepsilon u - \frac{1}{2} y v &= -\pder{p}{x} \\ \varepsilon v+ \frac{1}{2} y u &= -\pder{p}{y} \\ \varepsilon p + \pder{u}{x} + \pder{v}{y} &= -Q \\ (w &= \varepsilon p + Q) \\ \end{align*}

Under the cosine-x-gaussian heating profile, the steady-state kelvin wave takes the form u=p=12q0(x)exp(14y2)v=0w=12(εq0(x)+F(x))exp(14y2)εq0+dq0dx=?F(x)cos(x) \begin{align*} u &= p = \frac{1}{2} q_0(x) \exp(-\frac{1}{4} y^2) \\ v &= 0 \\ w &= \frac{1}{2}(\varepsilon q_0(x) + F(x)) \exp(-\frac{1}{4}y^2) \\ \varepsilon q_0 + \der{q_0}{x} \stackrel{?}{=}& -F(x) \propto \cos(x) \\ \end{align*} From the last equation we see that the Kelvin wave has spatial decay rate ε\varepsilon. The paper states that in this nondimensional form it moves with unit speed (verify this?), so it exhibits spatial decay rate ε\varepsilon.

Implications for large-earth simulation:

The wave moves at unit speed when 1x~=xc2β 1 \sim \tilde{x} = x\sqrt{\frac{c}{2\beta}} , 1t~=t12βc 1 \sim \tilde{t} = t \sqrt{\frac{1}{2\beta c}}. Since we won't be varying NN or DD, we can assume c=1c = 1. If Δx~Δt~=1\frac{\Delta \tilde{x}}{\Delta \tilde{t}} = 1, then ΔxΔt=c2β12βc=2c2β2β=c.\frac{\Delta x}{ \Delta t} = \frac{\sqrt{\frac{c}{2\beta}}}{\sqrt{\frac{1}{2\beta c}}} = \sqrt{\frac{2c^2 \beta}{2\beta}} = c.

Therefore, if I keep β\beta constant on a larger earth, then the wave will travel at a speed that depends only on the depth of the atmosphere and the B-V frequency.

Since β=2Ωcos(ϕ0)a\beta = \frac{2\Omega \cos(\phi_0)}{a}, then if we set a=10a0a = 10a_0 and Ω=Ω010\Omega = \frac{\Omega_0}{10}, then β=2Ω01010a=β0100 \beta = \frac{2 \cdot \Omega_0}{10 \cdot 10 a} = \frac{\beta_0}{100}. The conclusion is that Rossby radius of deformation NHπf\frac{NH}{\pi f} should be kept constant by keeping ff constant!

BV frequency derivation (slightly wrong, there's a typo)

Assume p(z=0)=p0,T(z=0)=T0p(z=0) = p_0, T(z=0) = T_0. A constant BV frequency gives gθθz=N2 \frac{g}{\theta}\pder{\theta}{z} = N^2 so zlog(θ)=N2g    log(θ)log(θ0)=N2g(zz0)    log(T(p0p)κT0)=N2gz    T=T0(pp0)κexp(N2gz) \begin{align*} & \pder{}{z} \log(\theta) = \frac{N^2}{g} \\ \implies& \log(\theta) - \log(\theta_0) = \frac{N^2}{g}(z-z_0) \\ \implies& \log\left( \frac{T \left(\frac{p_0}{p} \right)^{\kappa}}{T_0} \right) = \frac{N^2}{g} z \\ \implies& T = T_0 \left(\frac{p}{p_0} \right)^\kappa \exp\left(\frac{N^2}{g} z\right) \end{align*} and using hydrostatic balance we get pz=ρg    pz=pgRdT    pz=pgRdT0(pp0)κexp(N2gz)    pz=pgp0κRdT0pκexp(N2gz)    pz=p1κgp0κRdT0exp(N2gz)    0zpκ1pzdz=gp0κRdT00zexp(N2gz)dz    p0ppκ1dp=gp0κRdT00zexp(N2gz)dz    pκp0κ=gp0κRdT0gN2(1exp(N2gz))    pκ=p0κ[1g2RdT0N2(1exp(N2gz))] \begin{align*} &\pder{p}{z} = -\rho g \\ \implies& \pder{p}{z} = -\frac{pg}{R_d T} \\ \implies& \pder{p}{z} = -\frac{pg}{R_d T_0 \left(\frac{p}{p_0} \right)^\kappa \exp\left(\frac{N^2}{g} z\right)} \\ \implies& \pder{p}{z} = -\frac{pg p_0^\kappa}{R_d T_0 p^\kappa \exp\left(\frac{N^2}{g} z\right)} \\ \implies& \pder{p}{z} = -\frac{p^{1-\kappa}g p_0^\kappa}{R_d T_0} \exp\left(-\frac{N^2}{g} z\right) \\ \implies& \int_{0}^{z'} p^{\kappa-1} \pder{p}{z} \intd{z} = -\frac{g p_0^\kappa}{R_d T_0} \int_0^{z'} \exp\left(-\frac{N^2}{g} z\right) \intd{z} \\ \implies& \int_{p_0}^{p'} p^{\kappa-1} \intd{p} = -\frac{g p_0^\kappa}{R_d T_0} \int_0^{z'} \exp\left(-\frac{N^2}{g} z\right) \intd{z} \\ \implies& p^\kappa - p_0^\kappa = -\frac{g p_0^\kappa}{R_d T_0} \frac{g}{N^2} \left(1-\exp\left(-\frac{N^2}{g}z\right)\right) \\ \implies& p^\kappa =p_0^\kappa \left[1 -\frac{g^2}{R_d T_0 N^2} \left(1-\exp\left(-\frac{N^2}{g}z\right)\right) \right] \\ \end{align*}

and based on p(z=)=0p(z=\infty) = 0 we see T0=g2RdN2T_0 = \frac{g^2}{R_d N^2}

p=p0[1g2RdT0N2(1exp(N2gz))]1/κ    (pp0)κ=[1g2RdT0N2(1exp(N2gz))]    1(pp0)κ=g2RdT0N2(1exp(N2gz))    1RdT0N2g2[1(pp0)κ]=exp(N2gz)    log[1RdT0N2g2(1(pp0)κ)]=(N2gz)    gN2log[1RdT0N2g2(1(pp0)κ)]=z \begin{align*} &p = p_0 \left[1 -\frac{g^2}{R_d T_0 N^2} \left(1-\exp\left(-\frac{N^2}{g}z\right)\right) \right]^{1/\kappa} \\ \implies& \left(\frac{p}{p_0}\right)^\kappa = \left[1 -\frac{g^2}{R_d T_0 N^2} \left(1-\exp\left(-\frac{N^2}{g}z\right)\right) \right]\\ \implies& 1-\left(\frac{p}{p_0}\right)^\kappa = \frac{g^2}{R_d T_0 N^2} \left(1-\exp\left(-\frac{N^2}{g}z\right)\right) \\ \implies& 1-\frac{R_d T_0 N^2}{g^2}\left[1-\left(\frac{p}{p_0}\right)^\kappa\right] = \exp\left(-\frac{N^2}{g}z\right) \\ \implies& \log\left[1-\frac{R_d T_0 N^2}{g^2}\left(1-\left(\frac{p}{p_0}\right)^\kappa\right)\right] = \left(-\frac{N^2}{g}z\right) \\ \implies& -\frac{g}{N^2}\log\left[1-\frac{R_d T_0 N^2}{g^2}\left(1-\left(\frac{p}{p_0}\right)^\kappa\right)\right] = z \end{align*}

Parent post: